Multiplier Ideals of Sufficiently General Polynomials

نویسنده

  • JASON HOWALD
چکیده

It is well known that the multiplier ideal J (r · a) of an ideal a determines in a straightforward way the multiplier ideal J (r ·f) of a sufficiently general element f of a. We give an explicit condition on a polynomial f ∈ C[x1, . . . , xn] which guarantees that it is a sufficiently general element of the most natural associated monomial ideal, the ideal generated by its terms. This allows us to directly calculate the multiplier ideal J (r · f) (for all r) of “most” polynomials f .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computations of Multiplier Ideals via Bernstein-sato Polynomials

Multiplier ideals are very important in higher dimensional geometry to study the singularities of ideal sheaves. It reflects the singularities of the ideal sheaves and provides strong vanishing theorem called the Kawamata-Viehweg-Nadel vanishing theorem (see [3]). However, the multiplier ideals are defined via a log resolution of the ideal sheaf and divisors on the resolved space, and it is dif...

متن کامل

An Algorithm for Computing Multiplier Ideals

We give an algorithm for computing multiplier ideals using Gröbner bases in Weyl algebras. To do it, we introduce a variant of (generalized) Bernstein– Sato polynomials defined by Budur–Mustaţǎ–Saito and give an algorithm for computing it. We present several examples computed by our algorithm.

متن کامل

Se p 20 04 BERNSTEIN - SATO POLYNOMIALS OF ARBITRARY VARIETIES

We introduce the notion of Bernstein-Sato polynomial of an arbitrary variety, using the theory of V -filtrations of M. Kashiwara and B. Malgrange. We prove that the decreasing filtration of multiplier ideals coincides essentially with the restriction of the V -filtration. This implies a relation between the roots of the Bernstein-Sato polynomial and the jumping coefficients of the multiplier id...

متن کامل

Bernstein-sato Polynomials of Arbitrary Varieties

We introduce the notion of Bernstein-Sato polynomial of an arbitrary variety, using the theory of V -filtrations of M. Kashiwara and B. Malgrange. We prove that the decreasing filtration of multiplier ideals coincides essentially with the restriction of the V -filtration. This implies a relation between the roots of the Bernstein-Sato polynomial and the jumping coefficients of the multiplier id...

متن کامل

A ug 2 00 4 BERNSTEIN - SATO POLYNOMIALS OF ARBITRARY VARIETIES

We introduce the notion of Bernstein-Sato polynomial of an arbitrary variety, using the theory of V -filtrations of M. Kashiwara and B. Malgrange. We prove that the decreasing filtration of multiplier ideals coincides essentially with the restriction of the V -filtration. This implies a relation between the roots of the Bernstein-Sato polynomial and the jumping coefficients of the multiplier id...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008